Skip to main content

Index Geophysics

On the modelling of M2 tidal magnetic signatures: effects of physical approximations and numerical resolution

Item

Title (Dublin Core)

On the modelling of M2 tidal magnetic signatures: effects of physical approximations and numerical resolution

Description (Dublin Core)

Abstract The magnetic signatures of ocean $$\hbox {M}_{2}$$ M2 tides have been successfully detected by the low-orbit satellite missions CHAMP and Swarm. They have been also used to constrain the electrical conductivity in the uppermost regions of the Earth’s mantle. Here, we concentrate on the problem of accurate numerical modelling of tidally induced magnetic field, using two different three-dimensional approaches: the contraction integral equation method and the spherical harmonic-finite element method. In particular, we discuss the effects of numerical resolution, self-induction, the galvanic and inductive coupling between the oceans and the underlying mantle. We also study the applicability of a simplified two-dimensional approximation, where the ocean is approximated by a single layer with vertically averaged conductivity and tidal forcing. We demonstrate that the two-dimensional approach is sufficient to predict the large-scale tidal signals observable on the satellite altitude. However, for accurate predictions of $$\hbox {M}_{2}$$ M2 tidal signals in the areas with significant variations of bathymetry, and close to the coastlines, full three-dimensional calculations are required. The ocean–mantle electromagnetic coupling has to be treated in the full complexity, including the toroidal magnetic field generated by the vertical currents flowing from and into the mantle.

Creator (Dublin Core)

Jakub Velímský
Alexander Grayver
Alexey Kuvshinov
Libor Šachl

Subject (Dublin Core)

Electromagnetic induction
Ocean tides
Ocean-mantle electromagnetic coupling
Geography. Anthropology. Recreation
G
Geodesy
QB275-343
Geology
QE1-996.5

Publisher (Dublin Core)

SpringerOpen

Date (Dublin Core)

2018-12-01T00:00:00Z

Type (Dublin Core)

article

Identifier (Dublin Core)

10.1186/s40623-018-0967-5
1880-5981
https://doaj.org/article/b795e966632a46d88abb8d87121a24e8

Source (Dublin Core)

Earth, Planets and Space, Vol 70, Iss 1, Pp 1-15 (2018)

Language (Dublin Core)

EN

Relation (Dublin Core)

http://link.springer.com/article/10.1186/s40623-018-0967-5
https://doaj.org/toc/1880-5981

Provenance (Dublin Core)

Journal Licence: CC BY